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1 Calculation of the cell volume in the LFM code.

What is said in this section is true for the calculation of the grid metric quantities for the
code in general, not only for the inner boundary. The calculation described here is valid for any
hexahedron mesh. In the legacy LFM fortran code the cell volume calculation is grid dependent
and is thus not as general. The parallel version of LFM uses new method. The corresponding
code can be found in metric.F. This method is also used in the new C++ calculation of the
field-aligned current.

The method for the calculation of the volume of a general hexahedron cell (faces are not
necessarily planar) is given by [Coakley, 1981]. In this approach the cell volume is just given by
the triple product of the vectors connecting the centers of the opposite faces of the cell. Here,
the position vector of the center of a face is defined as the average of the position vectors of
the four corresponding vertices. A more general (and more accurate) formulation is given by
[Kordulla and Vinokur, 1983] and later improved by [Davies and Salmond, 1985].
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2 Calculation of the current density.

The current calculation is based on the vector identity:
∫

V

dV ∇

(

~A ⊗ ~B
)

=

∫

∂V

~B
(

~A · d~s
)

, (1)

where V is a region in space with boundary ∂V , the integral on the left-hand side is a volume
integral of the dyadic product of vectors ~A and ~B, and the integral on the right-hand side is
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Figure 1: Cell stencil.

the surface integral over the boundary ∂V . Using ~A = ~j and ~B = ~x, where ~j and ~x are the
current density and position, one obtains

∫

V

dV ∇

(

~j ⊗ ~x
)

=

∫

∂V

~x
(

~j · d~s
)

. (2)

The integral on the left hand side can be simplified:

∫

V

dV ∇

(

~j ⊗ ~x
)

=

∫

V

dV
[

~x∇~j +
(

~j∇
)

~x
]

=

∫

V

~j dV, (3)

where we have used ∇~j = 0 and
(

~j∇
)

~x = ~j. Therefore, from Eq. (2) it follows

∫

V

~j dV =

∫

∂V

~x
(

~j · d~s
)

. (4)

The approximated Eq. (4) written for a given grid cell yields

〈

~j
〉

Vcell =
∑

α

~xc
α

∫

Sα

~j · d~s, (5)

where
〈

~j
〉

is the average current density in the cell, Vcell is the cell volume, the summation on

the right-hand side is carried out over the cell faces, ~xc
α is the center of the corresponding face,

i.e. the average of position vectors of the four face vertices, and Sα denotes that the integral is
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taken over the corresponding cell face. In this notation the area element vector d~s is defined to
point outward of the cell. Further, taking advantage of the Ampere’s Law

µ0

∫

S

~j · d~s =

∮

L

~B · d~l, (6)

where L is the boundary of surface S, from Eq. (5) one obtains

〈

~j
〉

=
1

µ0Vcell

∑

α

~xc
α

∮

Lα

~B · d~l, (7)

where Lα is the edge of quadrilateral α and the integrals over the opposite faces are taken in
opposite directions, since the corresponding area element vectors were defined to point outward
of the cell.

Fig. 1 shows a general hexahedron cell. We will call the left and the right faces i-face and
(i+1)-face. Respectively, the front and the back faces are called j-face and (j+1)-face, and the
top and the bottom faces are called k-face and (k+1)-face. In this notation Eq. (7) becomes

〈

~j
〉

=
1

µ0Vcell

[(

~xc
i+1I

int
i+1 − ~xc

iI
int
i

)

+
(

~xc
j+1I

int
j+1 − ~xc

jI
int
j

)

+
(

~xc
k+1I

int
k+1 − ~xc

kI
int
k

)]

, (8)

where I int
i,j,k stand for the line integrals in Eq. (7) calculated for the corresponding faces.

3 Staggered mesh

The implemented calculation of the current density is accomplished on a staggered mesh. Fig. 2
shows a slice of the grid at some k+1/2. The black squares denote the centers of the actual
grid cell. So, the calculation described above is actually done on the offset grid drawn in red.
The current is therefore specified at the centers of the red cells (red crosses). In the case of
the calculation in the two innermost shells the current is specified at the i=2 layer. In the two
outermost points (j=1 and j=njp1) with a black circle around the red crosses the current is set
to zero. In the rest of the points (red crosses) the current is calculated according to Section 1.

j=1 j=njp1
i=1

i=nip1

Figure 2: Slice of the grid at some k+1/2.
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4 Ionospheric field aligned current

The method for the calculation of the current density described above is used in the LFM code
to calculate the current density in the innermost shell of the magnetospheric grid. In order to
obtain the field aligned current flowing in and out of the ionosphere the above current should
be mapped along the field lines. Let the magnetospheric current density be ~jm and the mapped
ionospheric current density be ~jion. Then

j‖ion =
~jion · ~Bion

Bion

j‖m =
~jm · ~Bm

Bm

and using j‖/B = const along a dipole field line one obtains

j‖ion =
Bion

Bm

(

~jm ·
~Bm

Bm

)

, (9)

where ~jm is the current density calculated using Eq. (8). Magnetic field ~Bm is approximated as
a dipole field

~Bm = −B0R
3

E

3 (n̂ · ẑ) n̂ − ẑ

R3
, (10)

where n̂ is the unit vector in the direction of the point at which the magnetic field is calculated,
ẑ is the unit vector in the direction of the dipole magnetic moment, B0 is the magnetic field
at the magnetic equator, and RE is the earth radius. Therefore, the components of the unit
vector ~Bm/Bm are given by

bx = −
1

√

1 + 3
(

z
R

)2

3xz

R2
(11)

by = −
1

√

1 + 3
(

z
R

)2

3yz

R2
(12)

bz =
1

√

1 + 3
(

z
R

)2

[

3 (x2 + y2)

R2
− 2

]

, (13)

where R2 = x2 +y2 +z2. To calculate the ratio Bion/Bm in Eq. (9) one recalls that the equation
of the magnetic field line is R = LRE sin θ, where θ is the magnetic colatitude, cos θ = z/R.
Therefore,

Rm

Rion

=
sin2 θm

sin2 θion

(14)

and

cos2 θion = 1 −
1 − cos2 θm

Rm/Rion

, (15)
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where subscript ’ion’ denotes the ionospheric footprint of the field line, and ’m’- the point on
the field line at the magnetospheric boundary. Finally, using Eq. (10) one obtains

Bion

Bm

=

(

Rm

Rion

)3

√

√

√

√

√

√

1 + 3

[

1 −
1−( z

R
)
2

R′

m

]

1 + 3
(

z
R

)2
, (16)

where R′
m = Rm/Rion is the distance to the point ’m’ in earth ionosphere radii. Now, using

Eqs. (11), (12), (13), and (16) one calculates the ionospheric field aligned current from Eq. (9).
Note, that the resulting current density does not depend on the earth’s dipole moment.

Finally, the current density calculated using Eq. (8) should be converted to MKS units
(A/m2). In the C++ jpara calculation the coordinates x, y, z are in ionospheric radii and the
magnetic field is in the LFM code units (Gs). Therefore, the current given by Eq. (8) before
division by µ0 is in [Gs/Rion] and the conversion factor is

10−4[T/Gs]

µ0 · rion · 10−2[m/cm]
=

105

4π · rion

[T/Gs]

[H/m][m/cm]
,

where µ0 is 10−7/4π [H/m] and rion = 6.5 · 108 is the ionosphere radius in cm.

5 Notes on the legacy LFM code implementation

In the legacy LFM code, magnetic field Bion in Eq. (8) is approximated to be equal to the field
at the pole and constant over the entire polar cap. Using Eq. (10), where n̂ = ẑ and n = 1,
one obtains Bion ≈ 2B0. In the current version of LFM Bion = 0.55 Gs (see function jsetup

in ionosphere.F). Magnetic field ~Bm given by Eq. (10) is calculated by functions bxqq0, byqq0,

and bzqq0 in dipole.F. Further, in the LFM B0 = 0.3 Gs (see definition of geoqmu in INPUT1
file). Later geoqmu is redefined (see inital.F in OMP code and init-fortran.F in P++ code) as
B0RE [Gs cm3]. In the LFM magnetic field units are Gs and distance units are cm. Therefore,
the current conversion factor is 10−2/µ0 = 105/4π. Finally, from Eq. (9) follows

j‖ion[A/m2] =
0.55 · 105

4π

~jm[Gs/cm] · ~Bm[Gs]

B2
m[Gs2]

= 4370.77
~jm[Gs/cm] · ~Bm[Gs]

B2
m[Gs2]

. (17)

In the LFM the constant used is 4376.76 (see function jsetup in ionosphere.F).
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